97 research outputs found

    Efficient sphere-covering and converse measure concentration via generalized coding theorems

    Full text link
    Suppose A is a finite set equipped with a probability measure P and let M be a ``mass'' function on A. We give a probabilistic characterization of the most efficient way in which A^n can be almost-covered using spheres of a fixed radius. An almost-covering is a subset C_n of A^n, such that the union of the spheres centered at the points of C_n has probability close to one with respect to the product measure P^n. An efficient covering is one with small mass M^n(C_n); n is typically large. With different choices for M and the geometry on A our results give various corollaries as special cases, including Shannon's data compression theorem, a version of Stein's lemma (in hypothesis testing), and a new converse to some measure concentration inequalities on discrete spaces. Under mild conditions, we generalize our results to abstract spaces and non-product measures.Comment: 29 pages. See also http://www.stat.purdue.edu/~yiannis

    Control Variates for Reversible MCMC Samplers

    Full text link
    A general methodology is introduced for the construction and effective application of control variates to estimation problems involving data from reversible MCMC samplers. We propose the use of a specific class of functions as control variates, and we introduce a new, consistent estimator for the values of the coefficients of the optimal linear combination of these functions. The form and proposed construction of the control variates is derived from our solution of the Poisson equation associated with a specific MCMC scenario. The new estimator, which can be applied to the same MCMC sample, is derived from a novel, finite-dimensional, explicit representation for the optimal coefficients. The resulting variance-reduction methodology is primarily applicable when the simulated data are generated by a conjugate random-scan Gibbs sampler. MCMC examples of Bayesian inference problems demonstrate that the corresponding reduction in the estimation variance is significant, and that in some cases it can be quite dramatic. Extensions of this methodology in several directions are given, including certain families of Metropolis-Hastings samplers and hybrid Metropolis-within-Gibbs algorithms. Corresponding simulation examples are presented illustrating the utility of the proposed methods. All methodological and asymptotic arguments are rigorously justified under easily verifiable and essentially minimal conditions.Comment: 44 pages; 6 figures; 5 table

    Critical Behavior in Lossy Source Coding

    Full text link
    The following critical phenomenon was recently discovered. When a memoryless source is compressed using a variable-length fixed-distortion code, the fastest convergence rate of the (pointwise) compression ratio to the optimal R(D)R(D) bits/symbol is either O(n)O(\sqrt{n}) or O(log⁑n)O(\log n). We show it is always O(n)O(\sqrt{n}), except for discrete, uniformly distributed sources.Comment: 2 figure
    • …
    corecore